

    
      
          
            
  
slouch: build cli-inspired Slack bots

Here’s an example Slack bot built with slouch:

from slouch import Bot, help

class PingBot(Bot):
    pass

@PingBot.command
def pingme(opts, bot, event):
    """Usage: pingme [--message=<message>]

    Respond with an at-mention to the sender.

    Pass _message_ to include a message in the response.
    """

    sender_slack_id = event['user']
    message = opts['<message>']
    response = ""

    if message is not None:
        response = message

    return "<@%s> %s" % (sender_slack_id, response)





And here’s a test for that bot:

from slouch import testing

class TestPingBot(CommandTestCase):

    bot_class = PingBot

    def test_ping(self):
        response = self.send_message('pingme', user='123')
        self.assertEqual(response, '<@123> ')





For more details, see the api reference or the full example bot [https://github.com/venmo/slouch/blob/master/example.py].





          

      

      

    

  

    
      
          
            

Index



 _
 | B
 | C
 | H
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | W
 


_


  	
      	__init__() (slouch.Bot method)


  





B


  	
      	Bot (class in slouch)


  





C


  	
      	command() (slouch.Bot class method)


  

  	
      	config (slouch.Bot attribute)


  





H


  	
      	help_text() (slouch.Bot class method)


  





I


  	
      	id (slouch.Bot attribute)


  





L


  	
      	log (slouch.Bot attribute)


  





M


  	
      	my_mention (slouch.Bot attribute)


  





N


  	
      	name (slouch.Bot attribute)


  





P


  	
      	prepare_bot() (slouch.Bot method)


  

  	
      	prepare_connection() (slouch.Bot method)


  





R


  	
      	run_forever() (slouch.Bot method)


  





S


  	
      	slack (slouch.Bot attribute)


  





W


  	
      	ws (slouch.Bot attribute)


  







          

      

      

    

  

    
      
          
            
  
Slouch api


	
class slouch.Bot(slack_token, config)

	A Bot connects to Slack using the RTM API [https://api.slack.com/rtm]
and responds to public messages that are directed to it with username-
or at-mentions.

Manage the Bot’s channels in Slack itself with the /join command.
A Bot can be in multiple Slack channels (though state is not isolated by channel).


	
config

	the same config dictionary passed to init.






	
id

	the bot’s Slack id.
Not available until prepare_connection().






	
log

	a Logger (logging.getLogger(__name__)).






	
name

	the bot’s Slack name.
Not available until prepare_connection().






	
my_mention

	the bot’s Slack mention, equal to <@%s> % self.id .
Not available until prepare_connection().






	
slack

	a Slacker [https://github.com/os/slacker] instance created with slack_token.






	
ws

	a WebSocketApp [https://github.com/liris/websocket-client] instance.
Not available until prepare_connection().






	
__init__(slack_token, config)

	Do not override this to perform implementation-specific setup;
use prepare_bot() instead.

No IO will be done until run_forever() is called (unless prepare_bot()
is overridden to perform some).





	Parameters:	
	slack_token – a Slack api token.

	config – an arbitrary dictionary for implementation-specific configuration.
The same object is stored as the config attribute and passed to prepare methods.














	
prepare_bot(config)

	Override to perform implementation-specific setup.

This is called once by __init__() and is not called on connection restarts.






	
prepare_connection(config)

	Override to perform per-connection setup.

This is called by run_forever and on connection restarts.






	
run_forever()

	Run the bot, blocking forever.






	
classmethod command(*args, **kwargs)

	A decorator to convert a function to a command.

A command’s docstring must be a docopt usage string.
See docopt.org for what it supports.

Commands receive three arguments:



	opts: a dictionary output by docopt

	bot: the Bot instance handling the command (eg for storing state between commands)

	event: the Slack event that triggered the command (eg for finding the message’s sender)






Additional options may be passed in as keyword arguments:



	name: the string used to execute the command (no spaces allowed)






They must return one of three things:



	a string of response text. It will be sent via the RTM api to the channel where
the bot received the message. Slack will format it as per https://api.slack.com/docs/message-formatting.

	None, to send no response.

	a dictionary of kwargs representing a message to send via https://api.slack.com/methods/chat.postMessage.
Use this to send more complex messages, such as those with custom link text or DMs.
For example, to respond with a DM containing custom link text, return
{‘text’: ‘<http://example.com|my text>’, ‘channel’: event[‘user’], ‘username’: bot.name}.
Note that this api has higher latency than the RTM api; use it only when necessary.











	
classmethod help_text()

	Return a slack-formatted list of commands with their usage.













          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		slouch: build cli-inspired Slack bots


      


    
  

_static/ajax-loader.gif





_static/comment-close.png





_static/down-pressed.png





_static/file.png





_static/plus.png





_static/up-pressed.png





_static/down.png





_static/up.png





_static/minus.png





_static/comment.png





_static/comment-bright.png





